Follow by Email

Follow by Email

Search This Blog

Saturday, 25 July 2015

Data mining


                                                                        





Image result for data mining












Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligencemachine learningstatistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processingmodel andinference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.
The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amount of data, not the extraction of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collectionextractionwarehousinganalysis, and statistics) as well as any application of computer decision support system, including artificial intelligencemachine learning, and business intelligence. The popular book "Data mining: Practical machine learning tools and techniques with Java" (which covers mostly machine learning material) was originally to be named just "Practical machine learning", and the term "data mining" was only added for marketing reasons. Often the more general terms "(large scale) data analysis", or "analytics" – or when referring to actual methods, artificial intelligence and machine learning – are more appropriate.
The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
See more: https://en.wikipedia.org/wiki/Data_mining